PROTEIN CHROMATOGRAPHY -ENGINEERING FUNDAMENTALS AND MEASUREMENT FOR PROCESS DEVELOPMENT AND SCALE-UP

30TH OF JUNE TO 5TH OF JULY 2024, VIENNA, AUSTRIA

 Held by: Prof. Alois Jungbauer; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria Prof. Giorgio Carta; Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA

Aim

Chromatography became an indispensable tool in research and development in biotechnology. The method is frequently applied for analytical and preparative separation purposes. Equipment, separation media and auxiliary materials have reached a very advanced level. The course will provide insight in the basic theories on chromatography and the fundamental relationships to understand the function of new media developed for high throughput and high capacity. The course will present the necessary chromatographic theory and give the participants an opportunity to apply the theory to experimental laboratory data.

Course description

The scope of the course is to provide insight in the application of chromatographic theory with special emphasis on mass transfer and dispersion.

The theory will cover the fundamentals, the sorption equilibria, modes of operation, insight in chromatographic media, dynamics of chromatography, effects of dispersion and extra column effects. The experimental part will comprise pulse response experiments, dynamic binding capacity, shallow bed experiments, and linear gradient elutions. The experiments will carried out with typical conventional porous media exhibiting different transport mechanisms. Participants will be also trained in the pitfalls of peak fitting and evaluation of chromatographic data. Detailed course notes will be provided. At the end of the course a detailed protocol has to be worked out.

Who should attend?

The course is aimed at those already employed in industry who is interested in getting more information out of their chromatographic data as well as PhD-students, Post Docs and those working in research laboratories. The participants will work in groups of 3-4 and should have some practical experience in performing chromatographic experiments. No particular background in chromatographic theory is required but a basic knowledge in separation science is an advantage.

Duration and location

The course will be given from Sunday 30th of June to Friday 5th of July 2024.

The course will be held at the

Department of Biotechnology University of Natural Resources and Life Sciences, Vienna Muthgasse 18 A-1190 Vienna, Austria Phone: 0043 1 47654 79083, Fax: 0043 1 47654 79009 E-mail: alois.jungbauer@boku.ac.at

Lunches, a reception on Sunday 30th of June and the course dinner on Thursday 4th of July 2023 will be provided. For other meals, a variety of restaurants may be found in Vienna.

Accommodation

Hotel or student hostel accommodation can be arranged at your request addressed to Petra Polak BA (petra.polakg@boku.ac.at).

Fee and registration

Please register via the BOKU Weiterbildungsakademie – link on homepage. Participants are limited to 20 people.

The fee is:

3,520 Euro in case of registration before 31st of January 2024 3,740 Euro in case of registration after 1st of February 2024 2,200 Euro for PhD students

The fee includes course materials, laboratory expenses, lunches and coffee breaks, the reception on Sunday 30th of June 2024 and the course dinner on Thursday 5th of July 2024. The fee does not cover other meals and lodging.

In the event of cancellation **before 15th of May 2024** a full refund will be granted, after this date, a 25% fee charge will be made.

Course outline

The lectures and exercises will be given by Professor Alois Jungbauer, Department of Biotechnology, University of Natural resources and Life Sciences and Professor Giorgio Carta, Department of Chemical Engineering, University of Virginia. Experiments will be performed on ÄKTA Pure. For each chromatography workstation one tutor will be available.

Detailed course notes including simulation programs will be provided. The instructors have

also published a book covering the theory and examples given during the course.

Current time schedule

Sunday, June 30th	
16:30	Registration
17:00	Introduction to the course
17:30	Downstream processing of biotechnological products
19:00	Dinner
Monday, July 1st	
09:00	Introduction to chromatography, definitions, models of operation
11:00	The chromatographic workstation
12:30	Lunch break
13:30	Experiments I (pulse response experiments, fitting of data)
16:30	Categories of chromatographic media

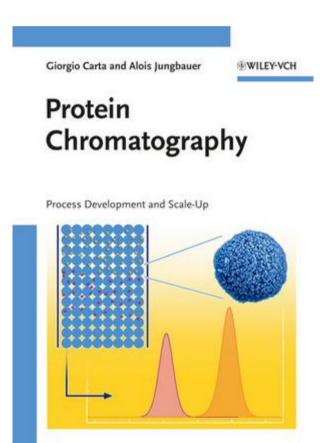
Tuesday, July 2nd

09:00 Evaluation of experiments I	
11:00 Sorption equilibrium	
12:30 Lunch break	
13:30 Determination of binding capac	ity
14:30 Experiments II (breakthrough cu	urves)

Wednesday, July 3rd

09:00 Evaluation of experiments II	
11:00 Local equilibrium dynamics, ideal chromatography	
12:30 Lunch break	
13:30 Linear gradient elution	
14:30 Experiments III (LGE, peak position and HETP from	LGE)

Thursday, July 4th


11:00 Effects of dispersion	
12:30 Lunch break	
13:30 Effects of dispersion and extra column effe	ects
14:30 Experiments IV	
19:00 Course dinner	

Friday, July 5th

09:00	Evaluation of experiments IV
11:00	Summary of course and protocol

Please note: The time table is currently just an overview of the content.

Book covering the content of the course – Recommended additional literature

Edition - April 2010
99.- Euro
2010. XVIII, 346 Pages, Hardcover
178 Fig. (3 Colored Fig.), 45 Tab.
- Practical Approach Book ISBN-10: 3-527-31819-4
ISBN-13: 978-3-527-31819-3 - Wiley-VCH, Weinheim

Course Sponsor

